PostgreSQL & Grafana – Real-time data processing pipeline – Part 6

Believe it or not, we are getting to the end of this small series about a potential real-time data processing pipeline.
In this final part I will show how Grafana can retrieve our pipeline data from PostgreSQL and visualize it as a graph. But before we dive into it, let’s have a quick recap of the previous topics.

So the bit that is still missing, is the visualization of data.

Starting the docker image

To keep things simple, I … more

Spark to PostgreSQL – Real-time data processing pipeline – Part 5

Previously I have demonstrated how streaming data can be read and transformed in Apache Spark. This time I use Spark to persist that data in PostgreSQL.

Quick recap – Spark and JDBC

As mentioned in the post related to ActiveMQ, Spark and Bahir, Spark does not provide a JDBC sink out of the box. Therefore, I will have to use the foreach sink and implement an extension of the org.apache.spark.sql.ForeachWriter. It will take each individual data row and write it to PostgreSQL.

Preparing PostgreSQL

TimescaleDB logo

Even though I want to use PostgreSQL, I am actually


Real-time data processing pipeline showcase – Series Overview

With the multitude of existing projects and solutions related to real-time data processing out there, it can be very easy to get lost in all the available options.

That is why I have started this blog series. I want to showcase an example pipeline that covers the topic of real-time data processing, from beginning (data generation) to the end (data presentation).

Generation on the left, data presentation on the right side

Below is an overview of the pipeline that I am going to use.

The example pipeline I am going to use

Here are the links to the related articles.

Scroll to top